嵌入改进SENet 的卷积神经网络连续血压预测

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:mobydick2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了基于改进SENet卷积神经网络和自学习参数滤波器的连续血压预测方法。实验结果表明,改进SENet可以有效增加简单卷积神经网络对时序数据的预测能力,在卷积层数为二层、三层和四层时比简单卷积神经网络预测精度提升了34.8%、23.5%和36.0%,在此基础上利用自学习参数滤波器消除血压预测波形中的毛刺,最终得到平滑的连续血压预测结果。
其他文献
针对回归问题提出了非对称ν-无核二次曲面支持向量回归机。通过引入Pinball损失函数,使得位于ε带上方和下方的样本点具有不同的惩罚,从而得到更优的回归函数。进一步从理论