基于粒子滤波与样本加权的压缩跟踪算法

来源 :电子与信息学报 | 被引量 : 5次 | 上传用户:ruru0077
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文针对压缩跟踪算法无法适应目标尺度的变化以及没有考虑样本权重的问题,提出一种基于粒子滤波与样本加权的压缩跟踪算法。首先,对压缩特征进行改进,提取归一化矩形特征用于构建目标表观模型。然后,引入样本加权的思想,根据正样本与目标之间距离的不同赋予正样本不同的权重,提高分类器的分类精度。最后,在粒子滤波的框架下融合尺度不变压缩特征进行动态状态估计,在粒子预测阶段利用2阶自回归模型对粒子状态进行估计与预测,借助观测模型对粒子状态进行更新,并且对粒子进行重采样以防止粒子退化。实验结果表明,相比于原始压缩跟踪算
其他文献
报道了一种采用特别设计的调节结构,并与温度机械相结合的方法来调谐FBG的中心波长的新颖光滤波器,它在温度变化60°范围内波长可线性调节9nm以上,线性度达0.9999.
该文结合掌纹图像的纹理特点,对原始韦伯局部描述子(WLD)中的差分激励和梯度方向进行改进,提出双Gabor方向韦伯局部描述子(DGWLD),以提高掌纹识别率。在构建新的差分激励图时,通过加入邻域像素点与中心像素点间灰度差分的方向信息,扩大异类掌纹间的差异。同时,采用双Gabor方向代替原始的梯度方向,减小平移和旋转对识别的影响。此外,为了更好地衡量特征间的相似度,使用交叉匹配算法,进一步提升识别率