论文部分内容阅读
针对数控直线伺服系统的定位误差补偿,采用激光干涉仪测量工作台的定位误差,建立基于RBF算法的神经网络误差模型。提出遗传算法的训练方案优化RBF的网络参数,为了评价优化后RBF网络预测的精度,运用部分误差样本进行训练和仿真。构建了以DSP为核心的直线电机定位误差实验平台,根据误差校正值进行误差实时补偿实验。仿真和实验结果表明:经过遗传算法训练的神经网络模型对工作台的误差具有良好的学习能力和泛化能力,工作台定位精度显著提高。