论文部分内容阅读
由于雷达目标及其所处环境的复杂性,导致不同目标之间的关系往往是非线性的.研究基于核的非线性方法,并将其应用于雷达目标一维距离像识别.核Fisher判别分析(KFDA)是一种抽取非线性特征的最有效方法之一,但它往往会面临小样本问题.针对此问题,给出一种null-KFDA方法,对距离像进行特征提取.然后,采用一种新的核非线性分类器——KNR(kernel-based nonlinear representor),对所提取的特征进行分类.对3种飞机的实测距离像进行实验,结果验证了null-KFDA的有效性.此外