论文部分内容阅读
社交网络的发展为情感分析研究提供了大量的多模态数据。结合多模态内容进行情感分类可以利用模态间数据的关联信息,从而避免单一模态对总体情感把握不全面的情况。使用简单的共享表征学习方法无法充分挖掘模态间的互补特征,因此提出多模态双向注意力融合(Multimodal Bidirectional Attention Hybrid, MBAH)模型,在深度模型提取的图像和文本特征基础上,利用双向注意力机制在一个模态下引入另一个模态信息,将该模态的底层特征与另一模态语义特征通过注意力计算学习模态间的关联信息,然后