基于双向注意力机制的多模态情感分类方法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:sandland
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
社交网络的发展为情感分析研究提供了大量的多模态数据。结合多模态内容进行情感分类可以利用模态间数据的关联信息,从而避免单一模态对总体情感把握不全面的情况。使用简单的共享表征学习方法无法充分挖掘模态间的互补特征,因此提出多模态双向注意力融合(Multimodal Bidirectional Attention Hybrid, MBAH)模型,在深度模型提取的图像和文本特征基础上,利用双向注意力机制在一个模态下引入另一个模态信息,将该模态的底层特征与另一模态语义特征通过注意力计算学习模态间的关联信息,然后
其他文献
分组聚集计算是OLAP重要的操作符之一,分组聚集操作是一种数据密集型负载。在内存数据库和GPU数据库应用场景下不仅需要研究其性能优化技术,还需要研究如何优化分配分组聚集
提出了一种全变分流边与M~2GGD概率密度分布相结合的自然图像分割方法。由于自然图像经常受噪声的污染,导致分割的区域结果视觉效果差,而区域间的边界具有较好的非同质区域区分能力,于是提出了利用全变分流来提取边界,并结合M~2GGD概率密度分布构建具有空间约束能力更强的图像分割方法。由于其能量最小化是NP难问题,通过设计最大期望最大似迭代优化方法,将待优化模型的区域项和边缘项,分别转化为多层图割模型的
自动驾驶汽车虚拟测试已成为自动驾驶或车路协同测试评价的一个重要手段,三维激光雷达数据模拟生成是自动驾驶汽车虚拟测试中的重要任务之一,目前多采用基于飞行时间原理的几
针对PU(Positive and Unlabeled)文本分类问题,提出了一种基于图卷积网络的PU文本分类算法(GCNPU),基本思想是给未标注样本加以不同的损失权重。将未标注样本全部视为负类样