论文部分内容阅读
针对兴趣点(POI)推荐研究中数据噪声过滤问题和不同POI的重要性问题,提出了一种融合时空信息和兴趣点重要性的POI推荐算法——RecSI。首先,根据POI的地理信息和POI之间相互吸引力过滤噪声数据,缩小候选集的范围;其次,根据用户在一天中不同的时间段对POI类别的偏好程度,结合POI的流行度计算出用户的偏好得分;然后,结合社交信息和加权PageRank算法计算POI重要性;最后,将用户的偏好得分和POI重要性线性结合,以向用户推荐TOP-K的POI。在Foursquare真实的签到数据集上的实验