论文部分内容阅读
针对利用虚假噪声应对统计攻击时可被攻击者识别的问题,对差分隐私保护模型展开研究,提出了一种基于粒子群聚类,通过真实用户位置偏移实现地理位置不可区分的隐私保护方法。该方法通过当前区域内匿名用户按照粒子群聚类的方式各自偏移,满足广义差分隐私模型的基本要求,实现地理位置不可区分。最后,通过模拟实验与同类满足广义差分隐私模型的算法进行对比分析,进一步证实了所提出的算法的执行效率和隐私安全。由此,可认为该方法具有更好的实用价值,更易部署在当前应用环境。