论文部分内容阅读
目的建立适用于药品不良反应主动监测数据特点的贝叶斯工具变量分析模型,控制潜在、未知的混杂因素对药品-不良反应关联推断的影响,获得更准确的药品安全性信息。方法采用汉密尔顿蒙特卡洛方法进行数据模拟和参数估计,对传统工具变量分析方法和贝叶斯工具变量方法在不同的参数设置情境下的结果进行比较和评价。结果在小样本、弱工具变量、遗漏混杂因素强度强和处理因素与结局变量发生率低的情况下,贝叶斯工具变量分析得到估计量的绝对偏倚较小,置信区间宽度最窄,估计结果最稳定。结论当主动监测研究中收集的数据量较小,关注的处理和结局因素为