基于ABC-RFEKF算法的锂电池SOC估计

来源 :电力系统保护与控制 | 被引量 : 0次 | 上传用户:ad2003happy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
准确、可靠的荷电状态(SOC)估计可以为电池管理系统的安全高效使用提供保障.针对锂电池SOC估计精度不足的问题,提出人工蜂群算法(ABC)和随机森林优化EKF算法(RFEKF)分别实现电池模型的参数辨识和SOC估计.在建立双极化模型的基础上,为解决在线辨识初始误差累积的问题,采用ABC算法搜索最小模型电压误差下的全局最优阻抗参数值,实现模型参数的精确辨识.在获得精确的模型参数基础上,使用随机森林(RF)对SOC后验估计误差进行在线补偿,达到弥补传统EKF算法高阶项误差的目的,进而实现SOC高精度估计.联合半实物仿真系统和电池测试平台,在EPA城市动力工况下对SOC估计算法实现快速控制原型验证.结果表明:基于ABC-RFEKF的锂电池SOC估计算法各项误差指标均低于传统SOC估计算法,平均误差在1%左右,满足实际工程需求.
其他文献
准确的低压配电网户变关系是电力营销管理和台区线损治理的重要基础,传统的户变关系识别方法排查成本高、识别效果欠佳,无法适用于规模日趋庞大的低压配电网.在此背景下,提出了一种基于智能电表量测数据和用户档案信息的低压配电网户变关系识别方法.首先利用用户地理位置信息实现邻近用户的初步合并,再基于GMM聚类算法对电压时序数据进行聚类划分,用户划分结果作为下一步的迭代初值.然后基于能量供需平衡建立配变与用户的关联卷积识别模型实现低压配电台区户变关系的辨识.最后,在实际的低压配电系统中验证了该方法在提升户变关系识别效率
随着碳交易系统的发展,准确预测电力能源消耗对于能源管理是至关重要的.为实现在缺失天气等多种关键信息下的电力负荷预测,首先采用混沌理论中的相空间重构技术对历史负荷时间序列进行处理,根据排列熵验证混沌特性.并利用8种机器学习模型进行预测与比较,其中包括4种以神经网络为基础的机器学习模型、3种以统计学习为基础的机器学习模型及1种基准模型.其次采用灰色关联度法对预测精度较高的极限学习机(ELM)和极端梯度提升(XGBoost)进行组合,构建了ELM-XGBoost模型.最后将ELM-XGBoost应用于一日至一周
柔性直流输电是新能源并网消纳的主要输电形式.由于新能源出力波动性会导致柔性直流输电系统的直流电压波动,影响其安全稳定运行.为了有效抑制柔性直流输电系统中直流电压波动,提出变速抽水蓄能机组直流电压辅助控制策略?首先建立了变速抽水蓄能机组、四端柔性直流电网、风电场及光伏电站的仿真模型.其次,以直流电压偏差乘以相应系数作为变速抽水蓄能机组有功功率参考值微增量,且通过低通滤波器滤去直流电压稳态分量对直流电压辅助控制的影响,提出基于直流电压辅助控制的变速抽水蓄能机组有功功率控制策略.最后,以变速抽水蓄能机组电动和发