论文部分内容阅读
随着信息共享时代的发展,海量数据的诞生对推荐系统提出了更高的要求.针对微博的海量数据,提出了一种融合朴素贝叶斯分类和基于用户的协同过滤算法的混合推荐算法.该算法将文本关键字作为特征属性,利用贝叶斯分类法筛选出用户可能感兴趣的数据,缩小推荐结果集;然后采用基于用户的协同过滤算法,通过计算用户相似度,根据最近邻居得到推荐结果列表.实验结果表明,混合推荐算法相比较于单一的推荐算法有着更高的准确率.