论文部分内容阅读
不同时间尺度上的水文序列预测在水资源调配和防洪减灾决策中起着重要的作用。提出了一种基于小波分解和非线性自回归神经网络相结合的水文时间序列预测模型(WNARN)。运用Daubechies 5(db5)离散小波将水文序列数据分解为低频和高频子序列,作为非线性自回归神经网络模型(NARN)的输入变量,贝叶斯正则化优化算法用来泛化网络,训练模型对各子序列进行模拟预测,预测值经db5小波重构后得到原序列预测值。利用渭河流域三个水文站40多年的月径流量序列对所提出的WNARN模型进行验证和向前48步的预测能力测试,并