论文部分内容阅读
在大坝变形预测中,运用人工神经网络模型进行预测分析已较为广泛,目前使用最多的是BP网络模型,但由于存在计算量巨大,且易出现局部极小和收敛慢等缺点,为此建立了大坝变形预测的径向基函数神经网络模型,并与改进的BP网络模型进行比较。实例表明,径向基函数模型具有良好的泛化能力,克服了BP模型的局部极小和收敛慢等缺陷,在预测精度及训练速度方面显著优于BP模型,具有一定的推广价值。