基于密集光流的步态识别

来源 :大连理工大学学报 | 被引量 : 10次 | 上传用户:yizhonglishi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为一种生物特征,步态在视频监控、行为分析等领域具有很大的应用前景.提取步态特征的关键在于对步态在时间、空间两个维度上的变化模式进行描述.基于密集光流提出了一种步态特征提取算法,通过密集光流表征每帧图像人体区域各部位的运动强度和方向,综合一个步态周期内所有单帧特征作为步态周期的特征.利用主成分分析、线性判别分析对步态特征进行降维处理,用支持向量机进行分类,验证提取特征的分类性能.实验结果表明,所提算法采用光流特征,提供了丰富的动态信息,可以很好地描述步态在时间维度上的变化,在与现有步态特征描述算法的
其他文献
空间调制(SM)系统的最大似然(ML)最优检测算法的计算复杂度很高,具有较低计算复杂度的M-ML检测算法受到了人们的关注.M-ML算法按照接收天线序号由小到大的顺序进行检测,从误比特率性能角度考虑并不是最佳的.通过研究不同检测顺序对算法性能的影响,提出了两个改进的M-ML算法,仿真结果表明改进的M-ML算法在误比特率性能上优于M-ML算法.由于M-ML算法在不同的信噪比下每层保留固定的节点数M,尤