论文部分内容阅读
已有的土壤有机质含量估测模型大多以光谱特征波段、线性和非线性模型为基础,较少考虑通过拓展样本数据建模集来提高模型的估测能力。为进一步提高土壤有机质高光谱反演模型估测精度,提出利用生成式对抗网络(GAN)合成伪高光谱数据和有机质含量的动态估测模型。选取湖南省长沙市及周边区域的水稻田为研究对象,采集土样和实测高光谱数据(350~2 500 nm),室内化学测定有机质含量。以高光谱数据和有机质含量为基础,利用生成式对抗网络生成等量新数据,结合原始数据建模集组成增强建模集。在GAN正式训练中,每轮训练完成后