论文部分内容阅读
摘要:作为教师,面临着时代的发展及课程改革的不断深入,我们应大胆尝试,积极探索,勇于创新。在小学数学课堂教学中,要善于采取各种方法,实现学生的有效学习,帮助学生储备知识,指导学生掌握探求知识的方法,调动学生探索研究未知领域的强烈愿望。
关键词:小学数学;教学;培养;发散思维
【中图分类号】 G623.5 【文献标识码】 B 【文章编号】 1671-1297(2013)01-0283-02
积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又能提高小学数学教学质量。
一 转换角度思考,训练思维的求异性
发散思维活动的展开,其重要的一点是要能改变已习惯了的定向思维,而从多方位、多角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方式,对新问题的解决产生错觉。所以,要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位思维的能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。加减、乘除、加乘之间都有内在的联系。例如,“189-7可以连续减多少个?”应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止地看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。
在教学中,还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,可引导学生分析题意时从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。从低年级开始就重视正逆向思维的对比训练,将有利于学生智力的全面发展。
二 通过举一反三,培养学生的发散性思维
学生在学习中,往往因为思维定势负迁移的影响,使思维受到某种固定“模式”的束缚,久久不能解脱,教师在进行逆向、变题、变式等训练的同时,教给学生类比和对比的方法,使学生能将知识从纵横两个方面进行联系和比较,形成知识的正迁移,将各种不同的方法结合起来运用,思路越来越开阔,方法越来越灵活,以致达到举一反三的效果。例如,有这么一道数学题:“淤泥中心一小兴趣小组共有学生50人,女生占全组人数的男、女生各多少人?”这时教师可以试着让学生们寻找出题中的一个已知条件,即“女生占全组人数的”来指引学生尝试在不改变它们的数量关系,而改变一下表达方式。其实这个条件,用所学“百分数”的形式来表达时,可以改为:“女生占全组人数的40%”;用“比例”的形式来表达又可以改为“女生和男生的人数比是2:3”;假如把条件中的标准量改变一下转个弯,则又可以改为:“女生人数是男生人数的倍”;或者“男生人数是女生人数的”;再如果能用比较复杂且灵活运用“分数比”关系表达,则又可以将标准量改为“女生人数的相当于男生人数的”或者“男生人数的相当于女生人数的 ”等等,诸如此类“发散思维”的问题。如果当学生在做习题时具备了上述这些灵活运用发散思维,并能通过“举一”就能“反三”的转化能力。那么就充分说明学生对数学概念掌握得很牢固,对题中的问题要求理解得很透彻,这样学生们的思路就开阔了,解题时的办法也就多了,解题速度也就提高了。这就是所为的通过“发散思维”来“借题发挥”加深概念。
三 培养思维的积极性是培养发散思维的关键
在小学数学教学中,激起了学生强烈的学习兴趣和求知欲,使他们永葆一种高涨的情绪投入到学习和思考。例如,在学习“平行四边形”的认识时,学生列举了生活中见过的平行四边形,当提到楼梯时出现了不同的看法。到底如何认识呢?我让学生带着这个“问题”学完了平行四边形的概念后,再来讨论认识家里的“平行四边形”可从几个方向来看,从而使学生的学习情绪在获得新知处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。例如:在二年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义已经掌握,虽然是二年级小学生,仍能较顺畅地完成了上述练习。而后,教师又示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。再如,在小学数学《除法》一节中,我先出示几道简单除法,让学生演算。由于有除法意义的基础,虽然是四年级小学生,仍能较顺畅地完成了上述练习。而后,600÷200,6000÷20,6000÷200,让学生思考、讨论能否演算出来,经过学生的讨论与教师及时予以点拨,学生能说出60÷20,算理是根据乘法2×3=6,也有的说算理是被除数与除数同时去掉一个0,从而算成6÷2=3虽然课堂费时间多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“问题性引入”、“趣味性引入”“讲小故事引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。
四 一题多解,训练思维的广阔性
思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有梯度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入思维的佳境。
五 转化思想,训练思维的联想性
想象力也是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述上看,不是工程问题,但题目特点又与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法迁移深化,由此及彼,有利于学生联想思维的训练。
总之,在数学教学中多进行发散性思維的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。
关键词:小学数学;教学;培养;发散思维
【中图分类号】 G623.5 【文献标识码】 B 【文章编号】 1671-1297(2013)01-0283-02
积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又能提高小学数学教学质量。
一 转换角度思考,训练思维的求异性
发散思维活动的展开,其重要的一点是要能改变已习惯了的定向思维,而从多方位、多角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方式,对新问题的解决产生错觉。所以,要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位思维的能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。加减、乘除、加乘之间都有内在的联系。例如,“189-7可以连续减多少个?”应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止地看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。
在教学中,还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,可引导学生分析题意时从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。从低年级开始就重视正逆向思维的对比训练,将有利于学生智力的全面发展。
二 通过举一反三,培养学生的发散性思维
学生在学习中,往往因为思维定势负迁移的影响,使思维受到某种固定“模式”的束缚,久久不能解脱,教师在进行逆向、变题、变式等训练的同时,教给学生类比和对比的方法,使学生能将知识从纵横两个方面进行联系和比较,形成知识的正迁移,将各种不同的方法结合起来运用,思路越来越开阔,方法越来越灵活,以致达到举一反三的效果。例如,有这么一道数学题:“淤泥中心一小兴趣小组共有学生50人,女生占全组人数的男、女生各多少人?”这时教师可以试着让学生们寻找出题中的一个已知条件,即“女生占全组人数的”来指引学生尝试在不改变它们的数量关系,而改变一下表达方式。其实这个条件,用所学“百分数”的形式来表达时,可以改为:“女生占全组人数的40%”;用“比例”的形式来表达又可以改为“女生和男生的人数比是2:3”;假如把条件中的标准量改变一下转个弯,则又可以改为:“女生人数是男生人数的倍”;或者“男生人数是女生人数的”;再如果能用比较复杂且灵活运用“分数比”关系表达,则又可以将标准量改为“女生人数的相当于男生人数的”或者“男生人数的相当于女生人数的 ”等等,诸如此类“发散思维”的问题。如果当学生在做习题时具备了上述这些灵活运用发散思维,并能通过“举一”就能“反三”的转化能力。那么就充分说明学生对数学概念掌握得很牢固,对题中的问题要求理解得很透彻,这样学生们的思路就开阔了,解题时的办法也就多了,解题速度也就提高了。这就是所为的通过“发散思维”来“借题发挥”加深概念。
三 培养思维的积极性是培养发散思维的关键
在小学数学教学中,激起了学生强烈的学习兴趣和求知欲,使他们永葆一种高涨的情绪投入到学习和思考。例如,在学习“平行四边形”的认识时,学生列举了生活中见过的平行四边形,当提到楼梯时出现了不同的看法。到底如何认识呢?我让学生带着这个“问题”学完了平行四边形的概念后,再来讨论认识家里的“平行四边形”可从几个方向来看,从而使学生的学习情绪在获得新知处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。例如:在二年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义已经掌握,虽然是二年级小学生,仍能较顺畅地完成了上述练习。而后,教师又示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。再如,在小学数学《除法》一节中,我先出示几道简单除法,让学生演算。由于有除法意义的基础,虽然是四年级小学生,仍能较顺畅地完成了上述练习。而后,600÷200,6000÷20,6000÷200,让学生思考、讨论能否演算出来,经过学生的讨论与教师及时予以点拨,学生能说出60÷20,算理是根据乘法2×3=6,也有的说算理是被除数与除数同时去掉一个0,从而算成6÷2=3虽然课堂费时间多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“问题性引入”、“趣味性引入”“讲小故事引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。
四 一题多解,训练思维的广阔性
思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有梯度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入思维的佳境。
五 转化思想,训练思维的联想性
想象力也是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述上看,不是工程问题,但题目特点又与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法迁移深化,由此及彼,有利于学生联想思维的训练。
总之,在数学教学中多进行发散性思維的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。