现有汽车的四轮转向装置结构复杂成本高昂,不适合在整车轻便且平价的民众车型上使用.文章提出一种基于飞锤离心装置控制的机械式汽车四轮转向系统,该系统利用飞锤感应车速,在低速行驶时实现前后轮反向偏转以减小汽车转向半径,中速行驶转向时后轮不辅助转向,高速行驶转向时前后轮同向偏转进而提高行驶稳定性,不同车速下后轮辅助转向幅度逐渐变化,无级调节,使具有该系统的汽车在日益复杂的交通状况下更加灵活和稳定.通过对该系统进行仿真验证,得到了预期的运算结果.
随着社会科技发展,对车辆智能化配置需求越来越强烈,面对日趋复杂的车门电子控制设计,新增一个功能就增加一个控制器的方式,不但增加了控制的复杂程度,整车线束也更加复杂,同时由于负载受限制,功能上无法做到多样化.故而国内外主机厂已经将分布式控制方式作为整车架构首选.文章采用左、右前门控制模块分别控制该侧车门上各种功能需求的控制方案,通过对模块的电源及信号采集硬件设计、软件系统架构及车窗防夹的软件设计方案,构建分布式控制方式,实现在提升整车性能的同时,达到有效降低整车成本的目标.
ADAS系统车辆在进行真实道路实车测试时,对其测试路线进行有效选择和制定是ADAS系统车辆道路测试亟需突破的问题之一.文章基于对ADAS系统环境感知技术的分析,考虑道路交通安全影响因素,提出了ADAS系统车辆测试的道路场景分类及路线选取原则,为提高道路测试效率和效果提供支持.