多网络联合识别辐射源个体的优化方法

来源 :信号处理 | 被引量 : 0次 | 上传用户:sallen009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对辐射源指纹特征间差异细微且受噪声干扰容易导致识别率下降的问题,提出了一种基于Stacking方法的辐射源个体识别优化算法。该算法集成了多个放缩程度各异的网络的识别结果,能利用不同网络结构在低信噪比条件下提取特征的差异性,从而提升算法整体的特征提取能力。同时为避免分类准确率提高造成模型规模过大,本文使用网络规模小且结构放缩差异较大的EfficientNets系列网络作为基础网络。实验首先在高斯信道条件下验证了基础网络能够有效识别功率放大器杂散噪声,之后利用Stacking等优化算法改进模型整体的性能。结
其他文献
针对恒包络交替二进制偏移载波(Alternate Binary Offset Carrier,AltBOC)调制信号组合码序列难以估计的问题,提出了利用改进K-means算法进行信号组合码盲估计方法。该方法首
由于直扩信号(Direct Sequence Spread Spectrum,DSSS)通常淹没在噪声中,为了有效地识别直扩信号、跳频信号(Frequency Hopping Spread Spectrum,FHSS)和常规调制信号,提出基
文章对安顺屯堡文化校本课程开发的现状及问题进行分析,并针对问题现象提出相应的解决对策,以期在现代教育中融入“乡土”味,将校本课程开发与传承民族文化相结合,让屯堡文化
抗遮挡在视频目标跟踪中是一个极具挑战的研究问题。在目标跟踪过程中,目标在被部分遮挡或者完全遮挡的情况下,使得跟踪模型的漂移导致目标跟丢。为了解决这一问题,本文提出了引入抗遮挡机制的SiamVGG网络目标跟踪算法,通过对网络输出置信图的峰值和连通域的变化规律分析,设置不同的跟踪模式,分别是正常跟踪、部分遮挡、完全遮挡和遮挡丢失,然后根据不同的模式选择不同的跟踪策略。相比于其他的跟踪算法,本文算法采用