论文部分内容阅读
地下水动态变化过程呈现出高度复杂的非线性特征,增加了地下水位预测的难度.为充分反映地下水位变化过程中自变量和因变量之间的非线性映射关系,克服在获取水文地质参数与查明水文地质条件方面的困难,避免部分智能方法实现繁琐复杂、计算效率低、限制条件多等不足,提出将因子分析方法与RBF神经网络算法构成复合模型,用于地下水位预测.结果表明,复合模型可以用于地下水位预测,模型计算结果可靠,网络训练时间缩短,计算精度有所提高;而且有成熟算法,实现简单.