【摘 要】
:
针对中文短文本信息量少、特征稀疏等特点,面向微博短文本进行情感分类研究,为了更好地提取短文本情感特征,从评论转发等上下文内容中挖掘具有语义递进关系的语料对原文本进
【基金项目】
:
国家科技支撑计划子课题(2013BAH21B02-01), 北京市自然科学基金资助项目(4153058), 上海市智能信息处理重点实验室开放基金(IIPL-2014-004)资助
论文部分内容阅读
针对中文短文本信息量少、特征稀疏等特点,面向微博短文本进行情感分类研究,为了更好地提取短文本情感特征,从评论转发等上下文内容中挖掘具有语义递进关系的语料对原文本进行扩展,并抽取具有潜在感情色彩的特征词,采用Word2vec计算词语相似度以进行候选特征词扩展,最后引入深度信念网络(Deep Belief Network,DBN)对候选特征词进行深度自适应学习。在COAE(Chinese Opinion Analysis Evaluation)2015任务评测数据集上的实验表明,该方法能够有效地缓解短文本特征
其他文献
主要探讨了如何在DSPs上高效地实现MPEG-4的视频压缩算法,问题的视频对象的数据结构并有效利用DSPs甚长指令和流水线的特点以加速压缩过程的实现.此外,还利用了混合编成的方
在简单介绍动态K值加权室内定位算法(EWKNN)并分析其不足的基础上,探索研究了基于动态K值及AP MAC地址筛选的室内定位算法。该算法首先使用EWKNN方法动态选择参考点个数,并根据
节点或边不可靠网络的可靠度分析问题是NP-hard问题,网络节点和边都不可靠的假设更接近现实。基于网络节点和边二元状态的假设,构建了节点和边不可靠网络的形式化模型,给出了分析节点和边不可靠网络可靠度的NEF_MDD算法。该算法将单个节点与其未访问邻接边划分为一个集合,通过枚举节点和边的不同组合,合并导致子网同构的冗余状态,获得简化后的状态向量和可靠度向量,并用一个多值决策图变量来表述。通过使用自定
针对多个云服务之间的跨域认证问题,提出一种基于SAML协议的云服务安全认证方案。阐明了该方案的关键技术机制,建立了云服务安全认证协议抽象模型;采用Casper和FDR软件的组合,通过模型检测法对云服务认证协议进行了形式化分析与验证;通过对安全认证协议进行分段模型检测,解决了安全协议形式化分析验证导致的状态空间爆炸问题。模型检测软件的实验结果验证了云服务跨域认证方案的有效性及安全性。
关联规则挖掘是数据挖掘领域非常重要的课题,在很多领域被广泛应用。关联规则挖掘算法都需要设置最小支持度和最小置信度。很多国内外学者研究的挖掘算法在这两方面都存在着一