论文部分内容阅读
电力系统的互联运行对继电保护设备提出更高的要求,而继电保护设备的安全稳定运行与故障率息息相关。为了解决标准粒子群(SPSO)陷入局部最优的问题,加入高斯扰动操作,提出了高斯扰动的标准粒子群算法(GDSPSO),并在优化过程改变传统学习因子是定值的缺陷,引入学习因子随着迭代次数变化的表达式,提高算法的搜索能力,更好地优化最小二乘支持向量机(LS-SVR)的学习参数,建立预测模型,并作误差分析。最后以某一地区相同型号,相同运行环境的24台继电保护设备为例,说明GDSPSO相比较其他3种算法而言,寻优速度快,稳