论文部分内容阅读
分类是数据挖掘中一个重要的研究领域。针对原始决策表中往往存在大量冗余信息,从而影响决策分类综合性能这一问题,提出了一种基于粗糙集和RBF神经网络的分类模型。该模型在保持训练样本分类质量的情况下,运用属性约简方法对决策表进行约简,得到维数较小的训练样本空间。通过这样确定RBF神经网络输入层变量,优化了网络结构。实例结果表明了该方法的有效性和实用性。