论文部分内容阅读
目的用线性调整惯性权重的蛙跳算法(linear decreasing inertia weight shuffled frog leaping algorithm,LWSFLA)训练支持向量机(support vectors machines,SVM),解决人脸识别中SVM在训练样本数较多且维数较高时,识别效果不理想的缺陷。方法该算法先用反向学习法产生初始群体提高初始解的质量,再修改最差青蛙的更新策略,并引入线性递减的惯性权重,最后应用于人脸识别中。结果与结论 ORL和CAS-PEAL-R1人脸库的