Thermal Property Measurements of a Large Prismatic Lithium-ion Battery for Electric Vehicles

来源 :热科学学报(英文版) | 被引量 : 0次 | 上传用户:wi7474974
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Because of the high cost of measuring the specific heat capacity and the difficulty in measuring the thermal conductivity of prismatic lithium-ion batteries,two devices with a sandwiched core of the sample-electric heating film-sample were designed and developed to measure the thermal properties of the batteries based on Fourier's thermal equation.Similar to electrical circuit modeling,two equivalent thermal circuits were constructed to model the heat loss of the self-made devices,one thermal-resistance steady circuit for the purpose of measuring the thermal conductivity,the other thermal-resistance-capacitance dynamic circuit for the purpose of measuring the specific heat capacity.Using the analytic method and recursive least squares,the lumped model parameters of these two thermal circuits were extracted to estimate the heat loss and correct the measured values of the self-made devices.Compared to the standard values of the reference samples of the glass and steel plates,the measured values were corrected to improve the measurement accuracies beyond 95% through steady thermal-circuit modeling.Compared to the measured value of the specific heat capacity of the battery sample at 50% state of charge using the calorimeter,the measured value using the self-made device was corrected in order to elevate the measurement accuracy by about 90% through dynamic thermal-circuit modeling.As verified through the experiments,it was reliable,convenient,and low cost for the proposed methodology to measure the thermal properties of prismatic lithium-ion batteries.
其他文献
土壤盐渍化降低土壤生产力.探索生物炭对盐胁迫下水稻幼苗耐盐性能的影响,对调控盐渍区水稻生产潜力具有重要意义.本研究通过生物炭介入盐胁迫稻田土壤的盆栽试验,调查了生物