基于接口变迁的交互流程模型挖掘方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:ssqq56
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
流程模型挖掘是基于系统运行记录下的事件日志来还原特征对应流程模型的技术。目前已有的挖掘方法多是基于由系统分解出的不同模块之间交互频繁且模块包含特征较少的场景。在挖掘包含较多特征、交互不频繁的流程模型方面,目前的方法存在一定的局限性。鉴于此,文中提出了基于接口变迁的交互流程模型挖掘方法。首先,利用现有的挖掘方法来挖掘模块内部的特征序,确定初始模块网;其次,遍历事件日志以查找疑似接口变迁;然后,通过挖掘特征网来确定接口变迁,并对接口变迁增加接口库所;最后,基于开放Petri网,利用合成网的观点将交互模块合成为
其他文献
针对低照度图像对比度增强处理中的细节保留和色彩恒常问题,提出一种新颖的基于Lab色彩空间和色调映射的Retinex图像对比增强算法。首先,在Lab色彩空间中将一个低对比度的输入图像分解成亮度和色度分量,并使用自适应双边滤波估计照明的强度,以便根据亮度和颜色值来考虑合适的相邻像素。然后利用基于抛物线的色调映射函数来提高估计光照图像的对比度。最后,将加强的亮度和原始的色度结合在一起以产生一个增强的彩色
鸡群优化算法(Chicken Swarm Optimization,CSO)是一个全新的群智能优化算法,简单且具有良好的扩展性。针对鸡群优化算法中因为母鸡的寻优能力差而使算法容易陷入局部极值的问题,提出了一种结合混沌思想的改进鸡群优化算法(Chaotic Improved Chicken Swarm Optimization Algorithm,CICSO)。该算法结合混沌思想的遍历性初始化鸡群位
车辆识别在智能交通领域中发挥着重要的作用,其可被用于违章抓拍、交通拥堵报警和自动驾驶等众多领域。文中提出结合车辆边缘联合建模的方法进行车辆识别。边缘联合卷积神经网络(E-CNN)通过简单有效的多特征联合方法提高了识别精度和模型收敛速度。为了验证E-CNN的性能,将多特征联合模型与VGG16和GoogLeNet模型进行对比。实验结果表明,所提模型的收敛速度相比VGG16和GoogLeNet有明显的优