论文部分内容阅读
在故障诊断领域中,对传统支持向量机(SVM)算法在数据失衡情况下无法有效实现故障检测的不足,提出一种基于谱聚类下采样失衡数据下SVM故障检测算法。该算法在核空间中对多数类进行谱聚类,然后选择具有代表意义的信息点,最终实现样本均衡。将该算法应用在轴承故障检测领域,并同其他算法进行比较,试验结果表明所建议的算法在失衡数据情况下较其他算法具有较强的故障检测性能。