论文部分内容阅读
函数优化是遗传算法应用的一个方面,标准遗传算法通常采用的是轮盘赌选择、单点交叉和变异等基本操作算子,其缺点是全局收敛性差,易造成"不成熟"收敛现象.研究表明,GA的收敛性主要是由选择算子实现的,轮盘赌选择易产生较大的随机误差,基于期望值和轮盘赌的混合选择策略则能够改善此误差.仿真结果表明,混合选择能够有效地提高GA对全局最优解的搜索能力,较好地改善"早熟"现象的产生.