论文部分内容阅读
针对深度卷积神经网络(CNN)中的过拟合问题,提出一种基于Dropout改进CNN的模型预测平均方法。首先,训练阶段在池化层引入Dropout,使得池化层单元值具有稀疏性;然后,在测试阶段将训练时池化层Dropout选择单元值的概率与池化区域各单元值所占概率相乘作为双重概率;最后,将提出的双重概率加权的模型平均方法应用于测试阶段,使得训练阶段池化层Dropout的稀疏效果能够更好地反映到测试阶段池化层上,从而使测试错误率达到与训练的较低错误率相近的结果。在给定大小的网络中所提方法在MNIST和CIFAR-