论文部分内容阅读
半正定约束度量学习(positive-semidefinite constrained metric learning,PCML)作为一种结合了支持向量机(support vector machine,SVM)的典型度量学习方法,在图像识别和行人重识别领域展现了优越的性能,然而在每次学习度量矩阵的过程中,该方法只简单地考虑不同类别样本之间的最大间隔,忽略了同一类别间的样本特征空间也在发生变化。基于此,提出了一种基于数据内在结构特征的度量学习方法。首先,与PCML相比,提出方法不仅考虑了不同类别样本之