GEE环境下融合主被动遥感数据的冬小麦识别技术

来源 :农业机械学报 | 被引量 : 0次 | 上传用户:hy3508
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
遥感技术已成为大宗作物种植面积提取的有效手段。为避免冬小麦提取中受光学数据缺乏的影响,基于随机森林算法(RF)和Google Earth Engine(GEE)云平台,探索时间序列Sentinel-1合成孔径雷达(SAR)数据后向散射系数对冬小麦提取效果,并融合Sentinel-1、2主被动遥感数据,研究后向散射系数、光谱特征、植被指数特征与纹理特征的不同组合对冬小麦识别精度的改善情况。结果表明:仅融合多时相Sentinel-1 SAR数据时,分类总体精度为85.93%,Kappa系数为0.75,冬
其他文献