论文部分内容阅读
遥感技术已成为大宗作物种植面积提取的有效手段。为避免冬小麦提取中受光学数据缺乏的影响,基于随机森林算法(RF)和Google Earth Engine(GEE)云平台,探索时间序列Sentinel-1合成孔径雷达(SAR)数据后向散射系数对冬小麦提取效果,并融合Sentinel-1、2主被动遥感数据,研究后向散射系数、光谱特征、植被指数特征与纹理特征的不同组合对冬小麦识别精度的改善情况。结果表明:仅融合多时相Sentinel-1 SAR数据时,分类总体精度为85.93%,Kappa系数为0.75,冬