论文部分内容阅读
数学模型可用来研究化工工艺的稳定性和多样性,入口工艺参数的不同组合及出口状态等工艺特征.探索获取指定选择率入口工艺参数的不同组合及范围并证明入口工艺参数组合的多种工艺出口状态(参数).通过数学模型图解的方法能得到出口状态全解,给出完整的工艺稳定体系特征图包括各种出口状态的转变,工艺过程的各种不稳定状态.用数学模型图解详细分析伴有竞争不可逆化学反应的反应精馏工艺多种分离状态并存的原因及其与工艺参数的依存关系,定性讨论分离状态稳定性情况,分析用分离状态极值边界数学模型作工艺设备费用和操作费用之间经济核算的可行性.
The mathematical model can be used to study the stability and diversity of chemical processes, different combinations of inlet process parameters and the export status, etc. To explore different combinations and ranges of process parameters for inlet with specified selectivity and to prove the various processes of inlet process parameters combination Exit state (parameters). Through the mathematical model of the graphic method can get the export state full solution, gives a complete process stability system characteristics including a variety of export state changes, the process of the various instabilities. Using mathematical models to illustrate the details Analyze the reasons for the coexistence of multiple separation states with the competitive irreversible chemical reaction and their dependence on the process parameters, discuss the stability of the separation state qualitatively, analyze the mathematical model of separation state extreme value for the cost of the process equipment and Feasibility of economic accounting between operating costs.