Direct manufacturing of Cu-based alloy parts by selective laser melting

来源 :Chinese Optics Letters | 被引量 : 0次 | 上传用户:asdfghjki
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The frequent defects of the metal parts, such as non-fully melting, thermal strain, and balling, which are produced by selective laser melting (SLM) that is a novel method of one-step manufacturing, are analyzed theoretically and experimentally. The processing parameters significantly affect the quality of the final parts, and simultaneously, the appropriate laser mode and the special scanning strategy assure a satisfying quality of the final parts. The SLM experiment is carried out using Cu-based powder. The metal part is divided into several scanned regions, each of which is scanned twice at the cross direction with different scanning speeds. The microstructure is analyzed on microscope. The results show that the part is metallurgically bonded entity with a relative density of 95%, and the microstructure is composed of equiaxial crystal and dendritic crystal whose distributions are mainly decided by the scanning strategy. The frequent defects of the metal parts, such as non-fully melting, thermal strain, and balling, which are produced by selective laser melting (SLM) that is a novel method of one-step manufacturing, are analyzed theoretically and experimentally. The processing parameters significantly affect the quality of the final parts, and simultaneously, the appropriate laser mode and the special scanning strategy assure a satisfying quality of the final parts. The SLM experiment is carried out using Cu-based powder. The metal part is divided into several The results show that the part is metallurgically bonded entity with a relative density of 95%, and the microstructure is composed of equiaxial crystal and dendritic crystal whose distributions are mainly decided by the scanning strategy.
其他文献
兴隆山群主要分布在兰州市东南约四十公里的兴隆山一带(图1),其下以不整合关系与前长城系马衔山群接触,其上未见顶。在甘青交界的大通河两岸,蓟县—青白口系花石山群以整合