论文部分内容阅读
利用物理气相沉积(PVD)方法在316L不锈钢表面分别镀制微米量级厚的TiN+TiC+TiN、TiN+TiC+SiO2复合膜。扫描电镜观察表明:膜致密,与基体结合牢固,抗氧化,抗热冲击。二次离子质谱(SIMS)和红外光谱(IR)分析结果证实:TiC和SiO2膜在300℃以上的氢中退火可形成抗氚渗透阻挡层。测量了不同温度下氚在带膜316L中的渗透率。在200~600℃范围内,镀有TiN+TiC+SiO2膜的316L的氚渗透率比镀钯316L降低4~6个数量级,镀TiN+TiC+TiN膜比镀钯膜降低4~5个数量级。这两种膜可用于聚变堆技术研究中第一壁、产氚包层及热交换器的表面涂层
TiN + TiC + TiN, TiN + TiC + SiO2 composite films were respectively plated on the surface of 316L stainless steel by physical vapor deposition (PVD) method. Scanning electron microscopy showed that: the membrane is dense, with a solid substrate, anti-oxidation, thermal shock. Secondary ion mass spectrometry (SIMS) and infrared spectroscopy (IR) analysis confirmed that TiC and SiO2 films annealed in hydrogen above 300 ° C formed an anti-tritium permeation barrier. The permeability of tritium in 316L with membrane was measured at different temperatures. In the range of 200-600 ℃, the tritium permeability of 316L coated with TiN + TiC + SiO2 film is 4 ~ 6 orders of magnitude lower than that of palladium 316L. The TiN + TiC + TiN film is 4 ~ 5 orders of magnitude lower than the palladium coating . Both membranes are used in the first wall of fusion reactor technology to produce surface coatings of tritium and heat exchangers