论文部分内容阅读
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行。而对涡扇发动机的剩余寿命(RUL)进行判断,是设备监测与维护的重要一环。针对涡扇发动机监测过程中存在的工况复杂、监测数据多样、时间跨度长等特点,提出了一种遗传算法优选时序卷积网络(TCN)基模型的集成方法(GASENTCN)的涡扇发动机剩余寿命预测模型。首先,利用TCN捕获长跨度下的数据内在关系,从而对RUL作出预测;然后,应用GASEN集成多个独立的TCN,以增强模型的泛化性能;最后,在通用的商用模块化航空推进系统