论文部分内容阅读
植物病虫害是农业部门面临的主要挑战,准确和快速地检测植物病虫害有助于发现早期治疗方法,同时大幅减少经济损失.基于机器学习的目标检测方法能够很大程度地提高物体检测和识别系统的准确性.提出了一种基于机器学习的番茄病虫害检测方法,通过提取有病虫害和无病虫害的番茄样本的HOG特征和LBP特征,然后结合SVM分类器训练样本得到检测模型. HOG特征能够较好地描述番茄叶的边缘特征,LBP特征能够较好地描述番茄叶的纹理特征,两个特征在一定程度上互补.实验结果表明,基于HOG与LBP特征结合检测有病虫害的番茄叶取得