论文部分内容阅读
针对大多数简单知识库问答模型没有充分利用候选实体排序,并且往往忽略实体和关系之间依赖的问题,提出了基于实体排序和联合事实选择的方法。整个过程分为模式抽取、实体排序和联合事实选择三个步骤。首先,通过BILSTM-CRF算法对自然语言问题进行模式提取,将其划分为实体提及(mention)和问题模式(pattern)两部分;然后,同时利用subject(主题实体)和mention的字面和语义相似性对候选实体进行排序,抽取相关事实;最后,为了能在候选事实池中选择出最正确的实体—关系对,联合事实选择模型利用多