论文部分内容阅读
岩性是储层评价和地层开发潜力评测的关键因素,是油藏描述、实时钻井监控及求取储层参数的基础.测井资料中包含丰富的地层岩性信息,是岩性分析的基础资料.然而,数据信息的精度往往会严重的影响到识别的准确率,同时复杂的岩性状况也加大了测井解释的难度,如何快速、精确、低耗地利用测井资料获取地层岩性信息越来越受到研究人员的重视.针对传统深度神经网络复杂的网络模型和学习性能严重依赖对超参数调节的问题,本文在机器学习的基础上引入余弦相似度对多粒度级联森林方法进行改进,提出改进多粒度级联森林模型(Improve Mul