论文部分内容阅读
通过对2000年1月至2014年10月的中国西瓜月度批发价格数据进行分析,建立了基于时间序列的价格预测模型。结果表明:SARIMA模型和季节因子分离模型都能较好地模拟国内西瓜价格波动,而组合模型对单一模型的预测精度又有一定提高;在此基础上对2014年11月至2015年12月的西瓜月度批发价格进行了预测分析。
Based on the monthly wholesale price data of Chinese watermelons from January 2000 to October 2014, a price forecasting model based on time series was established. The results show that both the SARIMA model and the seasonal factor model can simulate the price fluctuation of domestic watermelons well, and the combined model can improve the prediction accuracy of the single model. On the basis of this, Watermelon monthly wholesale price forecast analysis.