论文部分内容阅读
蚁群聚类LF算法是基于蚂蚁堆形成原理而产生的群体智能算法,存在收敛速度慢、易陷入局部最优等缺陷。为了提高LF算法的收敛速度,在算法中提供具有全局意义的记忆中心,算法运行初期,蚂蚁根据全局记忆中心的启发信息运行,随着算法的迭代,不断更新全局记忆中心。为了避免算法陷入局部最优,在全局记忆中心的指导下,每只蚂蚁向距离最小的点运动,而不是采用直接跳转的方法。新算法使用UCI数据集中的Iris和Wine验证,算法的查准率和查全率要优于其他算法。