论文部分内容阅读
针对复杂工况下管道系统堵塞状态识别模型精度出现偏差的问题,提出一种基于时频图像和卷积神经网络(CNN)对管道内的堵塞物和三通件个体识别方法。首先,利用声波检测管道得到不同工况的低频声压信号,滤波处理后进行平滑伪Wigner-Ville时频分析得到声信号时频分布图;然后,采用大津阈值分割法对单一和复杂工况时频分布图像进行自适应分割,得到堵塞物和三通件时频图像;最后,将单一工况下轻度堵塞、重度堵塞、三通件和管道尾端4种物体的时频图像输入至卷积神经网络-支持向量机(CNN-SVM)模型进行训练,将训练好参