【摘 要】
:
知识图谱在医疗、金融、农业等领域得到快速发展与广泛应用,其可以高效整合海量数据的有效信息,为实现语义智能化搜索以及知识互联打下基础.随着深度学习的发展,传统基于规则和模板的知识图谱构建技术已经逐渐被深度学习所替代.梳理知识抽取、知识融合、知识推理3类知识图谱构建技术的发展历程,重点分析基于卷积神经网络、循环神经网络等深度学习的知识图谱构建方法,并归纳现有方法的优劣性与发展思路.此外,深度学习虽然在自然语言处理、计算机视觉等领域取得了较大成果,但自身存在依赖大规模样本、缺乏推理性与可解释性等缺陷,限制了其进
【机 构】
:
山东科技大学 电子信息工程学院,山东 青岛 266590
论文部分内容阅读
知识图谱在医疗、金融、农业等领域得到快速发展与广泛应用,其可以高效整合海量数据的有效信息,为实现语义智能化搜索以及知识互联打下基础.随着深度学习的发展,传统基于规则和模板的知识图谱构建技术已经逐渐被深度学习所替代.梳理知识抽取、知识融合、知识推理3类知识图谱构建技术的发展历程,重点分析基于卷积神经网络、循环神经网络等深度学习的知识图谱构建方法,并归纳现有方法的优劣性与发展思路.此外,深度学习虽然在自然语言处理、计算机视觉等领域取得了较大成果,但自身存在依赖大规模样本、缺乏推理性与可解释性等缺陷,限制了其进一步发展.为此,对知识图谱应用于深度学习以改善深度学习自身缺陷的相关方法进行整理,分析深度学习的可解释性、指导性以及因果推理性,归纳知识图谱的优势以及发展的必要性.在此基础上,对知识图谱构建技术以及知识图谱应用于深度学习所面临的困难和挑战进行梳理和分析,并对该领域的发展前景加以展望.
其他文献
针对建筑物混凝土腐蚀检测中传感器单一且常规卡尔曼滤波算法容易出现滤波精度降低的问题,提出了一种多传感器综合检测方法.采用改进的自适应卡尔曼滤波算法,利用最大概似估计准则,将新息方差直接引入卡尔曼滤波器的增益计算,实现估计模型的动态调整,降低了系统噪声和测量噪声的干扰.最后,对自适应卡尔曼滤波和常规卡尔曼滤波算法进行了仿真对比实验,结果表明,自适应卡尔曼滤波算法有效提高了多传感器信号检测的精度和稳定性,性能优于常规卡尔曼滤波算法.
为了改善在远程共享时,易出现的实时性差以及数据信息安全性能低问题,提出一种基于粒子群优化的数据库信息远程共享方案.根据网络实时环境及数据库信息特征整理,构建整体远程共享构架,使用粒子群优化法计算数据库信息中目标函数,将待实现优化的数据库作为粒子,实施初始化参数操作,并采取分组形式实现粒子运动位置的实时更新,再将最优粒子替换较差粒子,直到全部信息符合共享条件,最优信息经过数字转换机制实现格式转换,输入到具有兴趣约束的远程共享平台中,完成信息的远程共享.仿真结果证明,所提方法可实施性强且共享整体效率较高,有效
针对传统方法数据修复率较低,修复耗时较长,修复准确性较低的问题,为提高通信网络链路非平稳数据修复效果,设计了一种通信网络链路非平稳数据自动修复方法.采集通信网络链路传输数据,并构建非平稳数据噪声模型,对采集的数据进行去除噪声处理.根据噪声处理结果采用遗传算法对非平稳数据进行检测,并采用决策树方法对非平稳数据进行自动修复.实验结果表明,所设计方法的数据修复准确性较高,非平稳数据自动修复率较高,并且修复耗时少,证明了所研究的修复方法提高了非平稳数据的修复效果,具备实际应用意义.