论文部分内容阅读
为了克服传统差分演化(DE)算法在求解约束优化问题时出现的收敛性慢和容易陷入早熟等缺陷,提出一种新的基于单形正交实验设计的差分演化(SO-DE)算法。该算法设计了一种结合单形交叉和正交实验设计的混合交叉算子来提高差分演化算法的搜索能力;同时采用了一种改进的个体优劣比较准则对种群个体进行比较和选择。这种新的混合交叉算子利用多个父代个体进行单形交叉产生多个子代个体,从两者中选择优秀个体进行正交实验设计得到下一代种群个体。改进的个体优劣比较准则对不同状态下的种群采用不同的处理方案,其目的在于能够有效地权衡目标函