论文部分内容阅读
视觉位置识别技术通过将地点图像与数据库中的图像集进行匹配,根据配对图像标签中的位置信息得到定位结果。现有的视觉位置识别网络都是为了应对室外场景而构建和训练的,在室内场景中的识别性能较差。文中提出了一种基于深度学习的室内视觉位置识别卷积神经网络架构,并在室内场景识别数据集上对网络进行了训练,然后在本地室内数据集上对网络参数进行进一步的微调,较好地解决了室内环境中的位置识别问题。和现有的其它视觉位置识别网络相比,文中训练的网络在实际室内环境测试中最大有30%的识别精度提升。