论文部分内容阅读
脑电(EEG)是一种在临床上广泛应用的脑信息记录形式,其反映了脑活动中神经细胞放电产生的电场变化情况。脑电广泛应用于脑-机接口(BCI)系统。然而,研究表明脑电信息空间分辨率较低,这种缺陷可以综合分析多通道电极的脑电数据来弥补。为了从多通道数据中高效地获取到与运动想象任务相关的辨识特征,该文提出一种针对多通道脑电信息的卷积神经网络(MC-CNN)解码方法,先对预先选取好的多通道数据预处理后送入2维卷积神经网络(CNN)进行时间-空间特征提取,然后利用自动编码(AE)器把这些特征映射为具有辨识度的特征