基于TF-IDF和随机森林算法的Web攻击流量检测方法研究

来源 :信息安全研究 | 被引量 : 0次 | 上传用户:feidog
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着网络技术与应用的发展,Web服务器不可避免地成为了黑客的主要攻击目标.而传统基于正则匹配的Web入侵检测系统存在规则库维护困难、特征库臃肿的问题;基于机器学习的常规检测模型也存在特征提取复杂、识别率较低的问题.针对这些问题,提出一种基于TF-IDF和随机森林构架的Web攻击流量检测模型,该模型使用TF-IDF算法构建词频矩阵,自动提取有效载荷的 特征,使用随机森林算法进行分类建模,识别出正常流量与攻击流量.实验结果表明:该方法对攻击流量的检测率达到98.7%, 实现了特征自动提取,简化了检测方法,适合
其他文献