三维动画技术对室内设计项目的影响研究

来源 :美术教育研究 | 被引量 : 0次 | 上传用户:jieswh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
三维动画技术经过多年的发展已经取得了一定的成果,被广泛运用于多个领域,尤其是建筑设计领域,但在室内设计中的运用还有待提高。文章首先确定了三维动画技术的含义,明确了三维动画技术与室内设计项目的关系,然后分析了三维动画技术对于室内设计方案展示的深度的影响及其多种展示手法对方案展示的重要影响,最后展望了三维动画技术与室内设计展示相结合的广阔前景。
其他文献
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
人类蛋白图像分类的目的是识别蛋白质细胞器中的细胞核浆、核膜等定位标签。针对蛋白质分类数据集大、多标签类别不平衡以及类间差异小等问题,结合CSPPNet与集成学习,提出一种人类蛋白质图像分类方法。该方法构建了粗细结合的CSPPNet模型,且将该模型前几层卷积生成的特征图加入空间金字塔池化层,并与模型后期卷积生成的特征图相结合,同时利用图片的整体特征和局部特征自动检测图片差异,以提高细粒度图像分类问题
为解决当前主流图像超分辨率重建算法对低分辨率图像中细节信息利用不够充分的问题,提出一种基于多尺度反向投影的图像超分辨率重建算法。使用多个不同尺度的卷积核从浅层特征提取层中提取出不同维度的特征信息,输入到反向投影模块后,交替使用升采样和降采样来优化高分辨率和低分辨率图像的投影误差,同时运用残差学习的思想将升采样和降采样阶段提取到的特征使用级联的方式进行连接,从而提升图像的重建效果。实验结果表明,在S
传统的否定选择过程需要将全部检测器与测试数据进行匹配以排除异常数据,该匹配过程需要花费大量时间,导致检测效率过低。为此,提出一种基于检测器集层次聚类的否定选择算法
针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN。利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果。实验