论文部分内容阅读
人脸的情感识别在人机交互领域有着重要作用,对人脸表情进行分类也是研究图像情感的一种方法。针对目前公开的人脸表情数据集数据量少,卷积神经网络的结构较复杂、参数多且计算量大、易出现过拟合的现象,需要构建一种针对小数据集的人脸表情分类模型。利用MTCNN模型进行人脸检测后,结合Inception的思想提出一种新的卷积神经网络模型,使用1×1卷积核对特征维数进行缩减,增加并平衡网络深度和宽度的同时不增加额外的计算负担,更精准的对人脸特征进行提取。经实验验证,提出的算法在CK+和JAFFE人脸数据集上,较其他