非限定条件下无约束的多姿态人脸关键特征自动识别算法

来源 :计算机科学 | 被引量 : 2次 | 上传用户:ddall
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多姿态人脸关键特征的自动识别,对处理人脸数据库中的图像具有重要意义。为了保证人脸关键特征被准确识别,需要对人脸关键特征进行提取。传统算法对多姿态人脸关键特征进行自动识别时有效性差、识别率低、效率低。为此,文中提出了一种基于向量机的多姿态人脸关键特征自动识别算法,利用相机的焦距将人脸关键特征图像的三维坐标表示出来,计算出多姿态人脸关键特征的三维信息。利用滤波器处理多姿态人脸的关键特征并对其进行提取,最后根据向量机的权值,对人脸关键特征的目标函数和特征中的噪声进行分析,计算人脸自动识别的条件概率和迭代次
其他文献
针对传统图像稀疏表示字典学习算法仅对图像训练学习单一字典,不能很好地对包含不同图像信息的图像块进行最优稀疏表示的问题,将图像灰度熵的思想引入到字典学习算法中,提出基于图像灰度熵的自适应字典学习算法。该算法将图像库作为训练样本,对图像库图像进行分块,计算各子块的灰度熵大小,依据灰度熵大小对子块进行分类,针对不同类别子块,设定不同K-奇异值分解算法参数,分别进行字典训练,从而得到多个不同的字典。根据灰
基于内容的图像检索是目前图像检索领域的研究重点。LBP纹理特征是基于内容的图像检索领域常用的特征。传统的LBP算法应用于图像检索系统时检索效率低,且不具有旋转不变性。旋转不变LBP(rotation invariant LBP,LBPri)算法虽然具备旋转不变性,但检索精度不高。为了提高基于内容的图像检索的精度和效率,在传统LBP算法的基础上提出一种增强旋转不变LBP描述符(Enhanced ro
事件时序关系分类是事件抽取的重要后续任务。随着深度学习技术的发展,神经网络在事件时序关系分类任务中发挥着重要作用。但是,对于传统的循环神经网络或卷积神经网络而言,