论文部分内容阅读
设整数a,b,c,d,e,f满足a>b≥0,c>d≥0,e>f≥0,a≡b (mod 2),c≡d (mod 2),e≡f (mod 2),a≥c≥e≥2,a=c时b≥d,c=e时d≥f.最近作者证明了如果有序六元组(a,b,c,d,e,f)在整数环上通用(即每个n=0,1,2,…可表成x(ax+b)/2+y(cy+d)/2+z(ez+f)/2的形式,其中x,y,z为整数),则它必在我们列出的12082个有序六元组中.本文中我们明确列出那12082个有序六元组并分析这些数据,还证明了许多