论文部分内容阅读
基于2008—2012年北京市4家三甲医院的脑卒中疾病急诊就诊资料及同期气象观测资料和环境监测资料,筛选气象和环境预报因子,采用广义相加(Generalized Additive Model,GAM)、逐步回归、BP(Back Propagation)神经网络及决策树4种方法编辑数据训练集(2008—2011年)和验证集(2012年)输入模型,建立北京市脑卒中疾病预报模型,计算各模型的拟合优度和预报准确率,对比分析脑卒中疾病各预报模型并确定最优预报方法。结果表明:北京市四季脑卒中疾病不同模型选取的预报因子