论文部分内容阅读
为提高复杂数据分类器的分类性能,结合人工免疫系统(Artificial immune system,AIS)的自适应识别能力与全局搜索能力,以及近邻传播(Affinity propagation,AP)算法自动确定最佳数据类数的能力,提出了一种基于人工免疫系统与近邻传播相结合的分类算法。通过自适应免疫算法,获得反映数据集模式特征的抗体记忆集,然后再利用基于聚类有效性指标的AP算法确定抗体记忆集的最佳聚类数,以此构造分类器。最后,通过人工数据集和UCI基准数据集来测试该分类器。实验结果表明,与直接采用免疫算